Tracking item representations during free recall

Jeremy R. Manning, David M. Blei, and Kenneth A. Norman

Princeton University

Introduction

Context-based theories of memory posit that items on a studied list
become associated with the mental context in which they are experi-
enced.

We present a framework for tracking the neural correlates of indi-
vidual items and the contexts in which they are experienced, during
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hot, drink, bread, ate, christmas
cause, health, disease, caused, drugs
water, animals, fish, live, animal

machine, metal, cut, engine, fig
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Context-based theories of memory. Context drifts gradually over time and be-

comes assoclated with each experienced event, giving rise to the contiguity etfect in
free recall. Our approach allows us to decode semantic information from neural pat-
terns. This will allow us to examine the extent to which the evolving neural repre-

sentation of context contains semantic information.

alr, matter, pressure, weather, weight

natural, oil, power, resources, industry
machine, metal, cut, engine, fig
water, heat, temperature, gas, liquid
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oirl, farm, spring, grass, woods
river, miles, wide, tom, hill
stood, dead, wonder, heart, till

MIST

time, set, watch, hour, minutes
table, miss, kitchen, desk, grandpa
bed, teeth, mouth, aunt, chair

CLOCK

table, miss, kitchen, desk, grandpa
business, buy, store, services, price
machine, metal, cut, engine, fig
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Latent Dirichlet Allocation. We assume each document is generated as follows, given a set
of K topics: (1) select topics for the document according to the sparsity parameter; (2) for each
word in the document, select the word’s topic according to the topics for the document; (3)
draw a word from that topic. LDA entails fitting the latent (unshaded) parameters given the
observed (shaded) words in the documents.

Overview. We measure the BOLD response evoked by each presented word during the ex-
periment. We use Latent Dirichlet Allocation, a topic modeling algorithm, to compute topic
vectors for each word in a large vocabulary. Using the known topic vectors for each of the pre-
sented words, our goal is to infer the neural representations of each topic. We then use the in-
ferred topic representations to decode topic vectors from previously unseen neural patterns.
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close, reached, pulled, caught, boat
look, picture, pictures, piece, glass
water, animals, fish, live, animal
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Experimental methods. Participants in an f{MRI scanner
view 60 words, repeated 3 times each. They then study and

freely recall 12-item lists of the same words.
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Decoding topic vectors from neural patterns. We use 5-fold cross validation to train and test
our decoding algorithm. We infer the neural representations of each topic by computing
weighted averages of the activity evoked by held-out words. We use correlations to decode
topic vectors from in-fold neural patterns.
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